If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25y^2+20y-4=0
a = 25; b = 20; c = -4;
Δ = b2-4ac
Δ = 202-4·25·(-4)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{2}}{2*25}=\frac{-20-20\sqrt{2}}{50} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{2}}{2*25}=\frac{-20+20\sqrt{2}}{50} $
| I4x+2I=I8x-3I | | 4x+2=8x-3 | | 3x+7/4x+5=3/5 | | 9/10b-1=19/20b+4 | | 3y^2+4=4y | | 4(x-2)-3(2x+3)=2(x-1) | | 6b+3=8b-3 | | (3x-2)2=9X2 | | 40x/(x+45)=25 | | 3x+5=19- | | 6(m-2)-3(m+9)+5(m-6)=0 | | (7/3x)-525=0 | | 4(x-1)-12=-28 | | x/45+x/40+23/40=1 | | 4x×8=32 | | 4x-5=3+5x | | 5(x+3)+3=33 | | -10-16x=-17x+8 | | 20x+6=40 | | 2/22=x/1650 | | m-(2m+5)=2(m+2) | | 8x+16=2x+40 | | (x^2−49)/(2x^2+13x−7)=0 | | 8=2/5f | | 2r+37=-r+92 | | 70710678118=5/a | | 6x-5(x+9)=2x-2 | | -4(2x-5)+7=-8x+27 | | 8y+4=3(y-1)=7 | | -1/4(2x+3)-3(7+2x)=11 | | X+2x+10=10 | | 2(y+1)=-2y+26 |